
CADEC 2023.01.19 & 2023.01.25 |
CALLISTAENTERPRISE.SE

SPRING BOOT 3
SPRING FRAMEWORK 6

MAGNUS LARSSON

AGENDA

• Overview

• Migration
• Native Compile
• Observability
• Summary

OVERVIEW

• The evolution of Java

2000 2023

APP
4
JVM

APP
3
JVM

APP
2
JVM

APP
1
JVM

Distributed SystemsApplication Servers

JAVA VM

APP
1

APP
2

APP
3

APP
4

JAVA EE

New Requirements
• Faster startup
- Shorten warmup
• Less memory
• Scalability
- Scale to zero
• Observability

OVERVIEW

• The evolution of Java

2018

Java SE 10
- Docker

2019

OpenJDK Graal VM
- Native compile

2022

Java SE 19
- Project Loom,
Virtual Threads
(preview)

2017

Java SE 9
- Modules

JAVA VM

APP
1

APP
2

APP
3

APP
4

JAVA EE

APP
4
JVM

APP
3
JVM

APP
2
JVM

APP
1
JVM

Emerging OpenJDK projects:

- CRaC, Amber, Valhalla, Leyden, and Panama

OVERVIEW

• The evolution of Spring

2014

Spring Boot 1
Spring Framework 4
• Convention over

Configuration
• Make JAR nor WAR
• Dependency Mgmt,

starters and bom

2018

Spring Boot 2
Spring Framework 5
• Reactive programming

model
• Production features

actuators
health, monitoring, metrics

2022

Spring Boot 3
Spring Framework 6
• Native Compile

• Observability
• Virtual Threads

JAVA VM

APP
1

APP
2

APP
3

APP
4

JAVA EE

APP
4
JVM

APP
3
JVM

APP
2
JVM

APP
1
JVM

THIS PRESENTATION

NEXT PRESENTATION

AGENDA

• Overview

• Migration
• Native Compile
• Observability
• Summary

MIGRATION

• Java 17 baseline

• Jakarta EE: Package rename: javax à jakarta
• E.g. JPA: javax.persistence.* à jakarta.persistence.*

• Deprecated code in 2.x removed

• Breaking changes etc
• Spring Boot 3.0 Migration Guide
• Spring Security 6.0 Migration Guide

• Importance of end-to-end black-box tests
• Run them before and after the migration!

tasks.withType(JavaCompile) {
options.compilerArgs += ['-Xlint:deprecation']

https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-3.0-Migration-Guide
https://docs.spring.io/spring-security/reference/migration/index.html

AGENDA

• Overview

• Migration
• Native Compile
• Observability
• Summary

NATIVE COMPILE

• Problem definition from Cadec 2021 - GraalVM Native Image

For details on GraalVM Native
Image, see this presentation

https://callistaenterprise.se/assets/presentationer/cadec-2021-graal.pdf

NATIVE COMPILE

• Concerns from Cadec 2021

NATIVE COMPILE

• Outcome from Cadec 2021

• Is it better now?

NATIVE COMPILE

• With Spring Boot 3 and Spring Framework 6
- Compile Spring Boot applications into standalone executables, called a native image

- Uses GraalVM native-image compiler
» New build module Spring AOT
» Supersedes Spring Native

• Benefits
- Shorter startup times
- No warm-up required
- Less memory required
- Fit for scaling up and down

» Even to zero

NATIVE COMPILE

• Spring AOT
- Creates and inspects an ApplicationContext

- Closed world assumption
» Classpath fixed and Spring Beans are defined at build time
» Minimize memory footprint

- Generates start-up code
» Creates a static ApplicationContext
» Programmatic registration of Spring Beans

public static void main(String[] args) {
ApplicationContext ctx = SpringApplication.run(ProductServiceApplication.class, args);

Replaces the slow
reflection based startup

NATIVE COMPILE

• Spring AOT
- Generates native configuration

• Recall from Cadec 2021:
- GraalVM native-image compiler transforms Java bytecode to an executable image
- Can’t figure out dynamic behavior

▸E.g. use of reflection, dynamic proxies, and local resources
- Described in a native configuration

NATIVE COMPILE

• Spring AOT
- Generates native configuration
- Sample of generated native configuration

- If Spring AOT fails, we can add native hints
» E.g. JSON mapping with Jackson

» Sample error message:

@RegisterReflectionForBinding({Event.class, Product.class})

Error: No serializer found for class se.magnus.util.event.Event
This appears to be a native image, in which case you may need to configure reflection

NATIVE COMPILE

https://spring.io/blog/2021/12/09/new-aot-engine-brings-spring-native-to-the-next-level

https://spring.io/blog/2021/12/09/new-aot-engine-brings-spring-native-to-the-next-level

NATIVE COMPILE

• More on Spring AOT

- AOT tests
» Builds a native image and runs tests inside it

» Detects missing Spring Beans and Reflection metadata
» Best to run in a CI/CD build pipeline

- Use AOT start-up code with Java VM (a.k.a AOT mode)
» Shorten startup time in Java VM with ≈20%

» Log output

./gradlew nativeTest

java -Dspring.aot.enabled=true -jar app.jar

... Starting AOT-processed ProductServiceApplication using Java 17.0.5 …

NATIVE COMPILE

• Stability over time
- Spring ecosystem

» Spring AOT smoke tests
- 3PP libraries

» GraalVM reachability metadata

https://github.com/spring-projects/spring-aot-smoke-tests
https://github.com/oracle/graalvm-reachability-metadata

NATIVE COMPILE

• How?
- Add GraalVM’s build plugin:

- Build a native image: ./gradlew nativeCompile
» Requires GraalVM JDK and native-image compiler
» OS & HW specific, e.g. macOS and ARM64

- Build Docker image: ./gradlew bootBuildImage
» HW specific, e.g. Intel x86_64

• Ongoing work
- GraalVM - Cross-compilation support
- Paketo buildpacks - Add support for ARM64
- Paketo buildpacks - 2023 Roadmap
- Callista blog post - Docker images on ARM64

plugins {
id 'org.graalvm.buildtools.native' version '0.9.18'

https://github.com/oracle/graal/issues/407
https://github.com/paketo-buildpacks/stacks/issues/51
https://github.com/orgs/paketo-buildpacks/discussions/58
https://callistaenterprise.se/blogg/teknik/2022/11/02/microservices-on-apple-silicon

TEST: NATIVE COMPILE

• System landscape from the 2ed of my book
- Migrated to Spring Boot 3

The microservice landscape
[System boundary]

Recommendation
[microservice]

Review
[microservice]

Product
[microservice]

Product Composite
[microservice]

MongoDB

MongoDB

MySQL

TEST: NATIVE COMPILE TIMES

• Compile times with ./gradlew nativeCompile
- Minimal Spring Boot app

- The Product service from the test landscape

- Not fast enough for a TDD – loop, but sufficient for a CI/CD build pipeline

- But significantly better than 2021

Finished generating 'product-service' in 1m 41s.
[native-image-plugin] Native Image written to: /Users/magnus/

Finished generating 'demo' in 32,3s.
[native-image-plugin] Native Image written to: /Users/magnus/

TEST: STARTUP TIMES

• Java VM microservices
- Started ProductServiceApplication in 4.988 seconds
- Started ProductCompositeServiceApplication in 5.495 seconds
- Started ReviewServiceApplication in 5.442 seconds
- Started RecommendationServiceApplication in 4.886 seconds

• Native image microservices
- Started ProductCompositeServiceApplication in 0.148 seconds
- Started RecommendationServiceApplication in 0.198 seconds
- Started ProductServiceApplication in 0.184 seconds
- Started ReviewServiceApplication in 0.229 seconds

Native image app
starts up 25 times

faster than JVM app

TEST: MEMORY USAGE AFTER STARTUP

• Java VM microservices
- review-1 239.2MiB
- product-composite-1 216.5MiB
- product-1 212.6MiB
- recommendation-1 215.5MiB

• Native image microservices
- product-1 78.53MiB
- recommendation-1 78.55MiB
- product-composite-1 55.84MiB
- review-1 70.14MiB

Native image app
requires less memory

to startup.

But what happens over time?

TEST: RESOURCE USAGE OVER TIME

• Test scope

The microservice landscape
[System boundary]

Recommendation
[microservice]

Review
[microservice]

Product
[microservice]

Product Composite
[microservice]

getCompositeProduct

MongoDB

MongoDB

MySQL

getProduct

getRecommendations

getReviews

TEST: RESOURCE USAGE OVER TIME

• Test setup

The microservice landscape
[System boundary]

Product
[microservice]

MongoDB
getProduct

Gatling 10 000 000
products

• 10 000 users
• 2-3 sec

sleep time
• ≈ 4000 req/s

• 2 min warmup
• 10 min test run
• ≈ 2 160 000 requests

Heap sizes tested
• 512 MB
• 256 MB

• Test results

Test case No of calls RSS mem
(MB)

CPU time
(min:sec)

Threads 50 %
(ms)

95 %
(ms)

Native, 256 MB 2 159 056 206 20:54 42 2 11
JVM, 256 MB 2 162 800 235 15:43 54 2 5
Native, 512 MB 2 158 443 220 20:23 42 2 9
JVM, 512 MB 2 163 090 347 15:52 54 2 5

TEST: RESOURCE USAGE OVER TIME

NATIVE COMPILE

• Reiterate the concerns from Cadec 2021

• Experimental Spring Native
replaced by Spring AOT

• Tests can run in AOT mode

• Spring smoke test project
• GraalVM reachability metadata project

• Simply add GraalVM’s build plugin

• In general, much less of a problem
• When needed, use Spring annotations
• Worst case, use

GraalVM’s Tracing Agent

• Native compile in a minute or two

• Summary
- Concerns from Cadec 2021 mitigated with Spring Boot 3

- Startup: Native 25 times faster than JVM
- Memory: Native beats JVM
- CPU: JVM Hotspot beats native

- Try it out, if start-up time is important!

NATIVE COMPILE

AGENDA

• Overview

• Migration
• Native Compile
• Observability
• Summary

?
OBSERVABILITY

• Observability = Logging + Tracing + Metrics

APP
4
JVM

APP
3
JVM

APP
2
JVM

APP
1
JVM

OBSERVABILITY

• Observability = Logging + Tracing + Metrics

APP
3

APP
2

APP
1

WHAT HAPPENED?

OBSERVABILITY

• Observability = Logging + Tracing + Metrics

APP
3

APP
2

APP
1

PROCESSING TIME?

OBSERVABILITY

• Observability = Logging + Tracing + Metrics

APP
3

APP
2

APP
1

RESOURCE USAGE?

OBSERVABILITY

• Observability in Spring Framework 6.0
- Logs and Metrics already supported in 5.0
- Tracing: New module, Micrometer Tracing

» Based on spring-cloud-sleuth
» Traces are reported as a trace tree of spans based on OpenTelemetry
» Contexts based on W3C Trace Context

OBSERVABILITY

• Tracing in Spring Framework 6.0
- Built-in support

» Creates traces for incoming requests, if missing
» Propagates to outgoing requests
» Supports both synchronous and asynchronous requests
» Propagates to logs

- Dependencies

» Support for alternative Tracer Implementations

- No auto propagation (yet) for reactive libraries, e.g. Spring WebFlux
» Spring Boot 3 Webflux project missing traceId and spanId in logs
» Context Propagation Library

Bridge Observability API
to OpenTelemetry

Report to a Zipkin
compatible tracer

https://docs.spring.io/spring-boot/docs/3.0.0/reference/html/actuator.html
https://github.com/spring-projects/spring-boot/issues/33372
https://github.com/micrometer-metrics/context-propagation

OBSERVABILITY

• Tracing in Spring Framework 6.0
- Programmatically

» Spring abstraction Observation
» Custom spans and contexts can be created

CONTEXT NAME
CONTEXT KEY VALUE

DEMO: OBSERVABILITY

The microservice landscape
[System boundary]

Product
[microservice]

Product Composite
[microservice]

getCompositeProduct

MongoDB

getProduct

Recommendation
[microservice]

MongoDB

getRecommendations

Review
[microservice]

MySQL

getReviews

DEMO: OBSERVABILITY

[topic]

The microservice landscape
[System boundary]

getCompositeProduct

Review
[microservice]

MySQL

getReviews

Reviews
[topic]createCompositeProduct

Product Composite
[microservice]

[metrics][logs][tracing]

metricsmetrics

The Grafana stack & Prometheus
is not the only alternative; see
CNCF Landscape for Observability!
(covering 145 products)

Client

https://landscape.cncf.io/card-mode?category=observability-and-analysis&grouping=category

DEMO: OBSERVABILITY

LOGS

TRACES

METRICS

DEMO: OBSERVABILITY

CONTEXT NAME

CONTEXT KEY VALUE

DEMO: OBSERVABILITY

AGENDA

• Overview

• Migration
• Native Compile
• Observability
• Summary

SUMMARY

• With Spring Boot 3, a new foundation is in place
- Expect a lot of improvements to come over the following years…

• Migration
- Upgrade to Java 17 and jakarta package names
- Remove deprecated code

• Native Compile
- Use if start-up time is important
- Test and build native images in CI/CD build pipeline
- Reduce startup times running Java VM in AOT-mode

• Observability
- Built-in auto-configuration for tracing
- One interface, Observation, to abstract them all
- One dashboard to observe them all

QUESTIONS?

ML@CALLISTAENTERPRISE.SE

MAGNUSLARSSONCALLISTA

LEGACY WARNING
BASED ON

SPRING BOOT 2

QUESTIONS?

ML@CALLISTAENTERPRISE.SE

MAGNUSLARSSONCALLISTA

THIRD

3.0

Mid-year 2023
(hopefully…)

