GITOPS, IAC & PULUMI

(CLOUD) INFRASTRUCTURE AS CODE DONE RIGHT (?) ... A JOURNEY FROM KUBECTL APPLY TO GIT PUSH

ANDREAS TELL

CADEC 2023.01.19 & 2023.01.25 | CALLISTAENTERPRISE.SE

- GitOps
 - Definition
 - Implementation
- Infrastructure as Code (IaC)
 - Pulumi
- Demo
- Wrap Up

WHAT'S GITOPS?

A set of principles for operating and managing software systems with

Git, CI/CD (Automation) and IaC (Infrastructure as Code)

is the managing and provisioning of infrastructure through machine-readable definition files* instead of through manual processes.

> 2020 : GitC * Proprietary syntaxes, JSON, YAML or 2021 (Oc General Purpose Programming Languages

CALLISTA

Infrastructure as Code (IaC)

CADEC 2021

COMPUTING FOUNDATION

0.0 published

WHAT'S GITOPS?

- A set of principles for operating and managing software systems with Git, CI/CD (Automation) and IaC (Infrastructure as Code)
 - ... leverages existing and widely adopted best practices
 - ... with a strong "Kubernetes-affinity"
 - 2017 : First coined by CTO of Weaveworks Inc. 2020 : GitOps working group founded CLOUD NATIVE
 - 2021 (October) : GitOps principles v1.0.0 published

GITOPS lac — Declarative Principles

v1.0.0

2021-10-08 HTTPS://OPENGITOPS.DEV/ BLOG/1.0-ANNOUNCEMENT/

11

1.

"Embedded CD process" Software agents automatically pull the desired state declarations from the source. a.k.a. "Reconciler"

Software agents continuously observe actual system state and attempt to apply the desired state.

DESIRED STATE

The aggregate of all configuration data that is sufficient to recreate the system so that instances of the system are behaviourally indistinguishable...

A system managed by GitOps must have its desired state expressed declaratively.

Git Consioned and Immutable

Desired state is stored in a way that enforces immutability, versioning and retains a complete version history.

Pulled Automatically

Continuously Reconciled

HTTPS://OPENGITOPS.DEV

IMPLEMENTING GITOPS - PULL & PUSH PIPELINES

GitOps - "Push Pipeline"

"Core Infra" Networking IAM DB **Kubernetes** Cluster

GitOps - "Pull Pipeline" GitOps Principles

kubernetes

1.0.0

Declarative

IMPLEMENTATION : GITOPS STYLE - "PUSH PIPELINE" - SETUP CORE INFRA

IMPLEMENTATION : TRUE GITOPS - "PULL PIPELINE"

IMPLEMENTING GITOPS - "OPS BY PULL REQUEST"

- Operations become "a function of Git interaction" (always)
 - Bonus: no need for RW access to infrastructure (Cloud, Kubernetes etc.)
- Branches protected by Pull/Merge requests (e.g. "main" -> "Production")
 - control gate / quality assurance
- Dedicated config repos
 - Segregation of configuration based on intended usage, access accordingly

IMPLEMENTING GITOPS - "OPS BY PULL REQUEST"

- Operations become "a function of Git interaction" (always)
 - Bonus: no need for RW access to infrastructure (Cloud, Kubernetes etc.)
- Branches protected by Pull/Merge requests (e.g. "main" -> "Production")
 - control gate / quality assurance
- Dedicated config repos
 - Segregation of configuration based on intended usage, access accordingly

CLAIMED BENEFITS / VALUE PROPOSITION

Higher Reliability

CALLISTA

- Increased Developer & Operational Productivity Shorter MTTR Improved DX Improved collaboration Improved consistency, predictability and repeatability
 - **Improved Security**

Reduce Cost

Increase Speed

Minimize Risk

- GitOps
 - Definition
 - Implementation
- Infrastructure as Code (IaC) Pulumi
- Demo
- Wrap Up

IAC TOOLS FOR CLOUD

Single cloud / Vendor Proprietary

AWS CloudFormation AWS CDK

Azure Resource Manager (ARM) Azure Bicep

A

Google Cloud Deployment Manager

• • •

Multi cloud / Multi purpose

• • •

PROVISIONING CLOUD INFRA - A STEPWISE PROGRESSION

NOT IAC

PULUMI - INTRO

- Infrastructure as Code tool for creating, deploying, and managing infrastructure
 - "modern" & "traditional"
- Supports 70+ providers
- Open source
- Used by
 - Atlassian
 - Meta

 \bullet \bullet \bullet

- Merzedes-Benz

PULUMI GOODNESS

- Multi-cloud
- "Infrastructure as Software"
- "Native providers"
 - Same day access to new features
 - » https://www.pulumi.com/blog/pulumiupnative-providers/
- Has properties to support "a GitOps style workflow":
 - Can observe infrastructure & detect drift
 - Idempotent
- Environment abstraction
- Built in secrets management

INFRASTRUCTURE AS SOFTWARETM

Why use a programming language to describe infrastructure?

- Familiarity (for Devs)
 - Syntax
 - Tooling IDE
- Auto complete (IDE)
- Type safety
- Modularity
 - Reuse
- Logical constructs
- Testability

CALLISTA

Cadec 2021 : AWS Cloud Development Kit

PROS & CONS

IAC EXAMPLE - AZURE STORAGE ACCOUNT

CALLISTA

const account = new azure.storage.StorageAccount("account", { resourceGroupName: resourceGroup.name, kind: azure.storage.Kind.StorageV2, sku: {

name: azure.storage.SkuName.Standard_LRS, });

Pulumi Typescript

PULUMI ARCHITECTURE

- GitOps
 - Definition
 - Implementation
- Infrastructure as Code (IaC) Pulumi
- Demo
- Wrap Up

DEMO - STEP 1 - INFRA SETUP

1. Execute "Push Pipeline" to setup core infra (K8S Cluster etc.) 2. Install Argo CD for GitOps "Pull Pipeline" for a demo app

CALLISTA

aws

Google Cloud

DEMO: OUTCOME FROM STEP 1 - ARGO CD DEPLOYS AND TRACKS DEMO APPLICATION

PULUMI PROGRAM

1	config:
2	aws:region: eu-north-1
3	aws:defaultTags:
4	tags:
5	project: "cadec23"
6	env: "staging"
7	<pre>eks-gitops:desiredClusterSize: "2"</pre>
8	<pre>eks-gitops:eksNodeInstanceType: t3.small</pre>
9	<pre>eks-gitops:maxClusterSize: "6"</pre>
L0	<pre>eks-gitops:minClusterSize: "2"</pre>
11	<pre>eks-gitops:vpcNetworkCidr: 10.0.0.0/16</pre>
12	eks-gitops:isMinikube: "false"

./Pulumi.staging.yaml

CALLISTA

8	// Grab some value
9	<pre>const config = new</pre>
10	<pre>const minClusterS</pre>
11	<pre>const maxClusterS</pre>
12	<pre>const desiredClust</pre>
13	<pre>const eksNodeInsta</pre>
14	// Problem : no av
15	<pre>// see: https://gi</pre>
16	<pre>const vpcNetworkC</pre>
17	<pre>const isMinikube =</pre>
18	
19	// Create a new VE
20	<pre>const eksVpc = new</pre>
21	enableDnsHostr
22	cidrBlock: vpc
23	});
24	
25	// Create the EKS
26	<pre>const eksCluster =</pre>
27	// Put the clu
28	vpcId: eksVpc.
29	// Public subr
30	publicSubnetIc
31	// Private sub
32	privateSubnet1
33	// Change cont
34	instanceType:
35	desiredCapacit
36	<pre>minSize: minCl</pre>
37	<pre>maxSize: maxCl</pre>
38	// Do not give
39	nodeAssociate
40	version: "1.24
41	<pre>});</pre>
68	// Export some va
69	export const kube
70	export const vpc
70	export const vpcr

es from the Pulumi configuration (or use default values) pulumi.Config(); ize = config.getNumber("minClusterSize") || 2; ize = config.getNumber("maxClusterSize") || 6; terSize = config.getNumber("desiredClusterSize") || 2; anceType = config.get("eksNodeInstanceType") || "t3.small"; vailable/free pods if choosing to too small EC2 instance, ithub.com/awslabs/amazon-eks-ami/blob/master/files/eni-max-pods.txt idr = config.get("vpcNetworkCidr") || "10.0.0.0/16"; config.requireBoolean("isMinikube"); awsx.ec2.Vpc("eks-vpc", { names: true, cNetworkCidr, cluster new eks.Cluster(`eks-cluster-\${pulumi.getStack()}`, { uster in the new VPC created earlier .vpcId, nets will be used for load balancers ds: eksVpc.publicSubnetIds, onets will be used for cluster nodes Ids: eksVpc.privateSubnetIds, iguration values to change any of the following settings eksNodeInstanceType, ty: desiredClusterSize, lusterSize, lusterSize, the worker nodes public IP addresses PublicIpAddress: false, ./Index.ts

lues for use elsewhere

config = pulumi.secret(eksCluster.kubeconfig); // K8S credentials d = eksVpc.vpcId; export const argoCDUrl = setupArgo();

🧯 Load balancers EC	2 Managen 🗙 🏻	🦲 Auto Scaling g	roup details	EC ×	C EKS	- Provision	□ · and	tell/clo 3	× -	F	
		Û	*	3		8 <mark>.</mark>	*	7564	<u>&</u> AB	2.02	*
										į	Ģ
			Sty Pin	n	Junwatch	1 -	ዮ Fo	ork O	•	☆	Sta
ô Settings											
									C	ancely	work
											VUIK
Artifacts											
run-argocd-on-eks											

 \mathbf{T}

- GitOps
 - Definition
 - Implementation
- Infrastructure as Code (IaC) Pulumi
- Demo
- Wrap Up

WRAP UP : CHALLENGES

- Branching scheme (don't do "branch per env")
- The foundational infra setup requires a competent IaC tool to work "GitOps style" - e.g. Pulumi
- Separation of concerns in config is not always clear
- PR-workflow might introduce a bottleneck
- Culture: developer-centric (may not sit well with operations engineers)

Hold

We suggest approaching GitOps with a degree of care, especially with regard to branching strategies. GitOps can be seen as a way of implementing infrastructure as code that involves continuously synchronizing and applying infrastructure code from Git into various environments. When used with a "branch per environment" infrastructure, changes are promoted from one environment to the next by merging code. While treating code as the single source of truth is clearly a sound approach, we're seeing branch per environment lead to environmental drift and eventually environment-specific configs as code merges become problematic or even stop entirely. This is very similar to what we've seen in the past with long-lived branches with GitFlow.

https://www.thoughtworks.com/radar/techniques/gitops

WRAP UP : WHAT DID WE GET WITH GITOPS?

Modified from source: https://www.weave.works/blog/what-is-gitops-really

CALLISTA

Git as the single source of **truth** of a system's desired state

ALL intended operations are performed as git push (possibly with pull request), for all environments

ALL diffs between Git and observed state are automatically reconciled

ALL changes are observable, verifiable and auditable

Immutable Infrastructure

Automation! No more Cowboy Ops \$ git revert HEAD

.. at least on K8S 🖓

\$ git log --graph --abbrev-commit

CLOSING THOUGHTS

- GitOps is 📥
 - Low hanging fruit a twist on usage of already existing tools / established processes
 - Beneficial even if not applying all principles
 (i.e. in scenarios outside K8S with no "agent")
 - "Infrastructure As Code done right"
- Declarative IaC + programming language is
 - The code should clearly express the **desired** state, over-engineering will lead to poor visibility

of ocesses nciples "agent"

ge is \checkmark lesired

WHERE TO GO FROM HERE

- GitOps for non-Kubernetes runtimes e.g. Serverless
- IaC test automation (unit-, integration-, E2E)
- Pulumi deep-dive
- Argo CD vs Flux CD
- Policy as Code
- Managing secrets
- Other providers (Azure, Google)

CALLISTA

g. Serverless , E2E)

HTTPS://WWW.MANNING.COM/BOOKS/GITOPS-AND-KUBERNETES

THANKS FOR LISTENING!

andreas.tell@callistaenterprise.se https://www.linkedin.com/in/andreastell