MONITORING IN THE CLOUD

ERIK LUPANDER

CADEC 2022.02.02 | CALLISTAENTERPRISE.SE

MIDDLE AGED MEN...

CROSSFIT

CALLISTA

CC: HTTPS://WWW.FLICKR.COM/PHOTOS/RUNARE/13472386673

CYCLING

PADEL

ELECTRIC CARS

CALLISTA

CC: WIKIMEDIA

ELECTRIC CARS

CC: MATTI BLUME

TODAY'S TOPIC: THE ELECTRIC CAR CHARGING PROBLEM

EDVARD MUNCH, PUBLIC DOMAIN

CHARGEFINDER.COM

CHARGEFINDER.COM

CCO: MAX PIXEL

HOW TO AVOID CHARGING QUEUES?

EDVARD MUNCH, PUBLIC DOMAIN

CHARGER AVAILABILITY METRICS!

AND SO OUR JOURNEY BEGINS...

WHERE IS THE DATA??

IONITY Mariestad

Ulriksdal, Mariestad, Sweden

Laddare

∧ 350 kW CCS

SE*ION*E303501 8,70 kr/kWh **SE*ION*E303502** 8,70 kr/kWh **SE*ION*E303503** 8,70 kr/kWh

SE*ION*E303504

8,70 kr/kWh

SCREEN SCRAPING?!?!?

CALLISTA

PUBLIC DOMAIN: FREESVG.ORG/PUKE-MAN

to	r Timi	ng C	ookies			
ri 2,	ce: "8, price:	70 kr/ "8,70	kWh", fre kr/kWh",	e: nul free:	l},…] null}	
3,	price:	"8,70	kr/kWh",	free:	null}	
2,	price:	"8,70	kr/kWh",	free:	null}	
2,	price:	"8,70	kr/kWh",	free:	null}	

THE SOLUTION

- Call Chargefinder's API every 15 minutes for the ~20 charging sites I'm interested in for the upcoming winter season.
- Store the data for later querying

ChargeFinder

MY REQUIREMENTS

- Not too expensive...
- Not in my closet
- Long data retention
- Powerful querying

USE MANAGED INFRASTRUCTURE IN THE CLOUD

THE OTHER PIECE...

CHOICE OF DATABASE

WHAT KIND OF DATA ARE WE GOING TO STORE?

JSON FROM CHARGEFINDER...

....WHICH WE TRANSFORM...

...INTO DATA "ROWS"

Site	Time	Available
Ionity Mariestad	2021-11-12T12:00:00	3
Ionity Mariestad	2021-11-12T12:15:00	2
Ionity Mariestad	2021-11-12T12:30:00	4

INDEX AND QUERY FRIENDLY!

Site	Time	Available	Day of week	Hour of da
Ionity Mariestad	2021-11-12T23:45:00	3	Friday	
Ionity Mariestad	2021-11-13T00:00:00	2	Saturday	
Ionity Mariestad	2021-11-13T00:15:00	4	Saturday	

THS LOOKS LIKE A TIME SERIES

#
TIME SERIES DATABASES

Prometheus

AZURE TIME SERIES INSIGHTS

CHOICE OF TIME SERIES DATABASE

- Relational- and document databases often provide time-series storage as well
 - I decided to focus on dedicated Time-Series databases
- AWS TimeStream, AWS Managed Service for Prometheus and InfluxDB Cloud
 - Fully managed
 - Zero up-front cost
- InfluxDB Cloud offers very powerful querying through its Flux query and scripting language as well as many visualization types

ARCHITECTURE

export class ChargerStatusStack extends cdk.Stack { constructor(scope: cdk.Construct, id: string, props?: cdk.StackProps) { super(scope, id, props);

func main() {

WHAT IS A TIME-SERIES DATABASE?

TO ANSWER THIS, WE NEED TO UNDERSTAND:

WHAT IS A TIME SERIES?

Consumption (kWh)

WHAT IS A TIME SERIES?

- A series name describing the what we are observing:
 - Temperature, Stock quote, Number of available chargers, CPU load...
- However...
 - Which thermometer?
 - Which stock?
 - Which charging site?
 - Which CPU of which Server in which data center?
- A time series also needs **metadata** describing the context of the data points:
 - commonly known as a tag or label

CALLISTA

re **observing**: f available

ch data center? ibing the

CHARGER AVAILABILITY TIME SERIES

- We are observing availability
- Our data has three **tags**:
 - Charging site
 - Weekday (Monday to Sunday)
 - Hour of day (0-24)

Site		Time	Available	Day of week	Hour of d
lonity	Mariestad	2021-11-12T23:45:00	3	Friday	
lonity	Mariestad	2021-11-13T00:00:00	2	Saturday	
lonity	Mariestad	2021-11-13T00:15:00	4	Saturday	

LET'S COMPUTE A TIME SERIES KEY!

TIME SERIES KEY

TIME SERIES KEY

EXAMPLE SERIES KEY

'availability : Ionity Mariestad : Saturday : 23'

"availability: Ionity Mariestad: Thursday: 23"

"availability: Ionity Mariestad: Thursday: 21"

HOW MANY TIMES SERIES IN THE TABLE?

SERIES 1: [lonity Mariestad] + [Friday] + [23]

SERIES 2: [lonity Mariestad] + [Saturday] + [0]

Site	Time	Available	Day of week	Hour of da
Ionity Mariestad	2021-11-12T23:45:00	3	Friday	
Ionity Mariestad	2021-11-13T00:00:00	2	Saturday	
Ionity Mariestad	2021-11-13T00:15:00	4	Saturday	

TIME SERIES KEYS

- Uniqueness of tags means that for "Ionity Mariestad" we will have
 - 1 site
 - 7 weekdays
 - 24 hours per day
 - => 168 time series per charging site

Q site=Max Alingsås
it / hour_of_day = 13 site = Max Alingsås weekday = Wednesc
ity hour_of_day = 21 site = Max Alingsås weekday = Sunday
ity hour_of_day = 9 site = Max Alingsås weekday = Sunday
ity hour_of_day = 1 site = Max Alingsås weekday = Tuesday
ity hour_of_day = 9 site = Max Alingsås weekday = Saturday
ity hour_of_day = 7 site = Max Alingsås weekday = Tuesday
ity hour_of_day = 12 site = Max Alingsås weekday = Thursda
ity hour_of_day = 21 site = Max Alingsås weekday = Friday
ity hour_of_day = 10 site = Max Alingsås weekday = Wednesc
ity hour_of_day = 2 site = Max Alingsås weekday = Thursday
ity hour_of_day = 17 site = Max Alingsås weekday = Tuesday
ity hour_of_day = 14 site = Max Alingsås weekday = Thursda [,]
ity hour_of_day = 0 site = Max Alingsås weekday = Sunday
ity hour_of_day = 0 site = Max Alingsås weekday = Thursday
ity hour_of_day = 19 site = Max Alingsås weekday = Tuesday
ity hour of doy - O cito - May Alipacôc wookday - Eriday

_time	site	hour_of_day	weekday	available
2021-11-24 14:00:00	Max Alingsås	13	Wednesday	
2021-12-01 14:00:00	Max Alingsås	13	Wednesday	
2021-12-08 14:00:00	Max Alingsås	13	Wednesday	
2021-12-15 14:00:00	Max Alingsås	13	Wednesday	
2021-12-22 14:00:00	Max Alingsås	13	Wednesday	
2021-12-29 14:00:00	Max Alingsås	13	Wednesday	
2022-01-05 14:00:00	Max Alingsås	13	Wednesday	
2022-01-12 14:00:00	Max Alingsås	13	Wednesday	

All series for site=Max Alingsås

CALLISTA

Data points for a single series aggregated per hour (UTC)

_time	site	hour_of_day	weekday	available
2021-11-24 13:15:00	Max Alingsås	13	Wednesday	
2021-11-24 13:30:00	Max Alingsås	13	Wednesday	
2021-11-24 13:45:00	Max Alingsås	13	Wednesday	
2021-11-24 14:00:00	Max Alingsås	13	Wednesday	
2021-12-01 13:15:00	Max Alingsås	13	Wednesday	
2021-12-01 13:30:00	Max Alingsås	13	Wednesday	
2021-12-01 13:45:00	Max Alingsås	13	Wednesday	
2021-12-01 14:00:00	Alingsås	13	Wednesday	
2021-12-08 13:15:00	Max, ngsås	13	Wednesday	

Data points without per-hour aggregation

TIMES SERIES CARDINALITY

- If we're tracking ~20 charging sites each having 168 distinct time series, we'll have ~3660 time series.
- Without aggregation, filtering, grouping and proper visualization this data is rather useless

2021-09-26 02:00:00

THE FLUX QUERY LANGUAGE

FLUX

- A general functional data scripting and query language (primarily for InfluxDB)
- Operates on Data Sources, not just InfluxDB data
 - InfluxDB, CSV, SQL
- Similar to ETL, composable streams etc.
- Supports
 - custom functions
 - pivot, join
 - map, reduce
 - histograms
 - much more...

SO - WHAT IS A TIME SERIES DATABASE!?!

TIME SERIES DATABASES

- The secret sauce is the **columnar store model**
- Data is structured in a read-friendly manner suitable for querying huge data sets
- Writing records needs many writes
- Worth looking into!!

ID	
1	
2	
3	

ID	NAME	SIZE	AGE
1	Erik	Μ	43
2	Lance	L	32
3	Ángela	S	71

SIZE	AGE
Μ	43
L	32
S	71

TIME SERIES DATABASES

- Data is very suitable for compression
 - Low variance
- Facebook whitepaper:
 - <u>https://www.vldb.org/pvldb/vol8/p1816-teller.pdf</u>
 - needs 16 bytes per metric data point
 - Compressed, they need 1.37 bytes on average! (about 11 bits)
- Time series data is 3 tuples:
 - series key (label + tags)
 - » timestamp
 - » value

PUBLIC DOMAIN: OPENCLIPART

	delta-of-delta	delta	_time	ŧ	site		_value
	1634677228	1634677228	2021-10-19 <mark>21:00:28</mark>	UTC	Bilmetro Noret		
	899	899	2021-10-19 <mark>21:15:27</mark>	лс	Bilmetro Noret	8 bytes	per int64
2 bytes per	int16	901	2021-10-19 <mark>21:30:28</mark>	υтс	Bilmetro Noret		
	0	899	2021-10-19 <mark>21:45:27</mark>	лтс	Bilmetro Noret		
	2	901	2021-10-19 <mark>22:00:28</mark>	υтс	Bilmetro Noret		
	0	899	2021-10-19 22:15:27	итс	Bilmetro Noret		
	2	901	2021-10-19 22:30:28	UTC	Bilmetro Noret		
	1	bytes per int8	2021-10-19 22:45:28	UTC	Bilmetro Noret		
	1	900	2021-10-19 23:00:28	UTC	Bilmetro Noret		
	1	900	2021-10-19 23:15:28	UTC	Bilmetro Noret		
			2021-10-19 23:30:27	UTC	Bilmetro Noret		
			2021-10-19 23:45:28	UTC	Bilmetro Noret		
			2021-10-20 00:00:28	з итс	Bilmetro Noret		
CALLISTA			2021-10-20 00:15:28	UTC	Bilmetro Noret		

- delta or delta-of-deltas

 can also be represented as
 value X repeated N
 number of times
- Can lead to less than 1 bit used per value :)

_time

2021-10-19

2021-10-19

2021-10-19

2021-10-19

2021-10-19

2021-10-19

2021-10-19

2021-10-19

2021-10-19

2021-10-19

2021-10-19

2021-10-19

2021-10-20

2021-10-20

	site	_value
21:00:28 UTC	Bilmetro Noret	
21:15:27 UTC	Bilmetro Noret	
21:30:28 UTC	Bilmetro Noret	
21:45:27 UTC	Bilmetro Noret	
22:00:28 UTC	Bilmetro Noret	
22:15:27 UTC	Bilmetro Noret	
22:30:28 UTC	Bilmetro Noret	
22:45:28 UTC	Bilmetro Noret	
23:00:28 UTC	Bilmetro Noret	
23:15:28 UTC	Bilmetro Noret	
23:30:27 UTC	Bilmetro Noret	
23:45:28 UTC	Bilmetro Noret	
00:00:28 UTC	Bilmetro Noret	
00:15:28 UTC	Bilmetro Noret	

TIMES SERIES DATABASES -MORE THAN METRICS?

PERHAPS THE QUESTION TO ASK IS:

WHAT IS A METRIC?

MORE THAN METRICS?

- Traditionally, we've collected technical metrics from servers such as CPU, memory usage and request/ response durations
- Business metrics have belonged to BI solutions
- Perhaps we'll see time series databases in the BI domain?

CC BY-SA 4.0: WIKIMEDIA COMMONS

"Virtually every data mart is a time series"

- RALPH KIMBALL, 1997

............

1

V.

Invoice Due (USD):

int:	\$0.00	
ax:	\$0.00	

FINAL WORDS

- A technology stack built around AWS services and the Cloud Development Kit provides a really cost-effective way to build and deploy services in the cloud.
- software.

• Time Series databases are picking up traction - both in the traditional metrics and IoT domains, as well as emerging as an alternative for business-oriented metrics such as event streams and some scenarios otherwise typically provided by Business Intelligence

WAIT A MINUTE?!?! WHAT ABOUT THE CHARGER STATS?

FINAL WORDS - CHARGER AVAILABILITY

- Planning is key for a smooth journey
- And while I really like and enjoy my electric car...
- ... I'll borrow a diesel car for the upcoming ski trip. :(

ctric car... ing ski trip. :(

EDVARD MUNCH, PUBLIC DOMAIN

THANK YOU!

RESOURCES

- Facebook's whitepaper
 - Link: <u>https://www.vldb.org/pvldb/vol8/p1816-teller.pdf</u>
- ChargeFinder:
 - <u>https://chargefinder.com</u>

- Summary: <u>https://jessicagreben.medium.com/four-minute-paper-facebooks-time-</u>

QUESTIONS?